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ABSTRACT

This chapter analyzes the link between adaptive R&D and the timing of
new technology adoption in a strategic search model with heterogeneous
firms. It is shown that the subgame-perfect equilibrium is in stopping rules
with a reservation property. The model is used to examine the effect of
rivalry, and whether R&D and adoption subsidies can increase social
welfare and generate strategic advantage in international technological
competition. It is found that the answers depend critically upon the
relative magnitude of first-mover and second-mover advantages in the
timing of adoption.

I. INTRODUCTION

One of the key determinants of industrial performance are the incentives to
adopt cost-reducing new technologies and introduce new products in the
marketplace. There exists a large literature on adoption and diffusion of new
technologies (see Reinganum, 1989, and Karshenas & Stoneman, 1995, for a
comprehensive survey). However, very little formal work has been done to
explore the process of adaptation of new technologies to individual firms’
requirements. The purpose of this chapter is to develop a formal framework that
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allows to study the link between adaptive R&D and the timing of new
technology adoption. The analysis and insights of this model should provide
some new answers to the questions of whether more competition may or may
not force firms to improve and better exploit new technology, and how
particular policy options may affect welfare and generate strategic advantage in
international technological competition.

As Rosenberg (1976) notes, “it is an often-told tale in the history of
inventions that they have to sit on shelves long after their initial conceptualiza-
tion because of the absence of the appropriate mechanical skills, facilities, and
design and engineering capacity required to translate them into a working
reality” (p. 199). Imperfections in the new technology need to be overcome and
bypassed by gradual inventive efforts. Modifications are required to meet the
needs of the individual firms. Human skills have to be developed for an
effective exploitation of the new technology. And often a series of com-
plementary technological and organizational inventions has to be awaited
before an innovation will appear attractive to potential adopters. Hence, the
profitability of adopting a new technology may be increased by various
development activities, however, these activities generally take time. Firms
may therefore have an incentive to postpone the adoption of new technology
until a later date. This incentive may be enhanced by late-mover advantages to
adoption due to learning from the other firms’ adoption experience (as in
Hoppe, 2000), and offset by early-mover advantages because of strategic
interaction in the product market (as in Fudenberg & Tirole, 1985). To find a
firm’s optimal adoption date these considerations have to be balanced.

The chapter presents a duopoly model in which firms may develop the
profitability of adopting a new technology over time by active search for
technological and adaptive information, taking potential first-mover and
second-mover advantages into account. To accomplish this, I developed a
strategic search model patterned after Chikte & Deshmukh (1993) and
Lippman & Mamer (1993), but with important differences. In Lippman and
Mamer’s model, only one firm can adopt the new technology, i.e. the winner
takes all. This chapter extends their model to allow for a follow-on adoption.
Nevertheless, the first mover may be able to gain advantage for various reasons,
e.g. better positioning in geographic and product characteristics space or
preemptive investment in plant and equipment. However, second-mover
advantages are likewise possible due to informational spillovers to adoption. In
Chikte and Deshmukh’s model of market entry and quality competition a
second-mover advantage is not ruled out a priori. However, their analysis
reveals that the competition always takes the form of a contest for being first.
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In the model of the present chapter, firms employ reservation level strategies
in the subgame-perfect equilibrium, i.e. they stop R&D and adopt the new
technology if and only if the expected profitability of the new technology
exceeds a certain level. At the equilibrium reservation level, the opportunity
cost to delay — the risk of being preempted plus foregone earnings from the use
of the new technology — are equal to the benefits of waiting — new information
gained by active search or observing the adoption experience of other firms.

The analysis reveals that the firms’ reaction functions in reservation levels
slope upwards [downwards] when first-mover advantages are relatively more
[less} important than second-mover advantages. This result may seem to
contradict the findings by Gal-Or (1985) on the relationship between the slopes
of reaction curves and the presence of first-mover and second-mover
advantages. The explanation for the difference is that Gal-Or considers a two-
stage game in which the order of moves is predetermined. In this chapter, the
order of moves in the adoption game is made completely endogenous by
adding a pre-play stage of search processes. The reaction curves considered in
this chapter result from the decision in that pre-play stage.

The model is used to analyze the effects of rivalry on a firm’s decision when
to adopt a new technology. Contrary to Lippman & Mamer (1993), a firm’s
equilibrium threshold for the profitability of adopting first may be higher in a
duopoly than a monopoly. This result is always obtained in the case of a strong
second-mover advantage. The reason is that each firm’s benefits from waiting
for higher profitability are increased by the possibility that another firm may
move first in the meantime. But even in markets with a strong first-mover
advantage, a duopolist may choose to wait until it is more profitable to adopt
the new technology, where a monopolist would have adopted. The reason is
that the opportunity costs of waiting in terms of foregone profits are lower for
a duopolist than a monopolist. This profit-dissipation effect is ruled out in
Lippman and Mamer’s model by the winner-take-all assumption.

The chapter also contributes to the surprisingly small literature on welfare
issues and public policies with regard to adoption and diffusion of new
technology.’ The analysis reveals that R&D policies may influence the timing
of adoption as well diffusion policies. In particular it is found that R&D and
adoption subsidies differ in their impact on welfare, and should adequately
depend on the relative magnitudes of early-mover and late-mover advantages in
the timing of adoption. Furthermore, policy questions in the field of
international technological competition are considered. In that context, R&D
and adoption subsidies are shown to have opposing effects on the distribution
of the leader’s and follower’s role.



200 HEIDRUN C. HOPPE

This chapter bridges a gap between timing games and models of search.
Search and game theory have been first combined by Reinganum (1982a) to
analyze R&D competition. Since then, search processes have been more and
more used to model development and information acquisition activities of
competing firms (see, for instance, Reinganum, 1983, Mamer & McCardle,
1987, and Taylor, 1995). Nevertheless, to the best of my knowledge, only the
following strategic search models allow for an analysis of timing questions:
Chikte & Deshmukh (1993), Lippman & Mamer (1993), and Fershtman &
Rubinstein (1997). However, all of them focus on first-mover advantages.

The chapter is related to the growing literature on real options or irreversible
investment whose value stochastically evolves over time. However, in this
literature the value of waiting is mostly analyzed in competitive settings
without any externalities (see Dixit & Pindyck, 1994, for a survey).?

The model is set up in Section II. In Section III, the existence of closed-loop
search equilibria is demonstrated. Comparative statics results and effects of
rivalry are discussed in Section IV. Section V examines policy implications,
and Section VI concludes. All proofs are placed in the appendix.

II. THE MODEL

There are two firms (i=1, 2) contemplating to adopt a new technology. Each
firm knows that, depending on the sequence of adoption, it may reap a potential
first-mover or second-mover advantage of some sort. Apart from the adoption
order, the expected value of adoption for a firm depends on how well the new
technology fits in with the firm’s working methods and production capabilities.
This fit in turn is determined by the innovation’s technical ambitiousness and
the firm’s competence in resource endowments and organizational capabilities
(see the empirical study by Langowitz, 1988). Before adopting the new
technology, each firm may therefore engage in adaptive R&D to enhance the fit
and thus the profitability of adoption, e.g. by accumulating information from
internal projects, technical consultants and academic research centers,
exploring organizational innovations, training the labor force, and testing a
prototype of the production process of a new good.® These activities generally
involve time, costs and uncertainty. They are therefore best captured by
sequential search processes (with recall). We assume that if a firm searches, it
will obtain technological and adaptive information that is used to increase the
(firm-specific) value of adoption over time.* The outcome of adaptive R&D is
assumed to be private information.

Let I1,(n) and I1,(n) denote the value of the new technology for the first
adopter (the leader) and second adopter (the follower), respectively, when n
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firms have adopted the new technology. Assume further that I1,(2) = all;(2),
where I1,(2)>0,0<a<1. Hence, we allow for a potential first-mover
advantage of some sort.” Adoption involves a fixed cost of K for firm i, where
0<K;<I1,(2). Adaptive R&D is assumed to result in a stochastic decrease of
the adoption costs to K;— 9, or equivalently, a stochastic increase in the
profitability of adoption by 6, where 6 measures the value of the adaptive
information, with 0 <8 <K,. Confining the impact of R&D to the firm-specific
value of adoption, i.e. ignoring any effects on the strategic advantage a, is
restrictive but makes the analysis tractable. Moreover, this assumption enables
us to link the search model to the timing game of new technology adoption by
Fudenberg & Tirole (1985) in which technological progress is represented by
an exogenous and deterministic decrease in the cost of adoption over time (see
the discussion in Section III). 8 is a random variable representable as a draw
from a continuous distribution F; defined on [0, K], with non-negative density
f; everywhere on its domain and finite mean. The draws are mutually
independent. New information from adaptive R&D is assumed to arrive
according to a Poisson process with rate A>0. Let r;>0 be firm i’s discount
rate. Hence search is costly due to the opportunity cost of foregone earnings
from the use of the new technology.® To rule out corner solutions, assume that
a firm initially prefers to engage in adaptive R&D, i.e. that A 6dF(0) is
sufficiently high.

Apart from the active search for information, each firm may also passively
acquire relevant information by observing the other firm’s adoption experience.
We assume that adoption by one firm gives rise to an informational spillover.
Let g, denote the value for firm i of the information disclosed by j’s adoption.
For simplicity, assume, &,=K; — x,, where x; is the increment to profitability
developed at a given point in time. Hence, we consider the polar case, in which
firm i learns the best way to adapt and adopt the new technology by observing
J’s experience such that further search activities become completely unat-
tractive. The adoption problem reduces thereby to a two-stage problem, in
which the order of moves is endogenously determined in the continuous-time
game of adaptive R&D. This specification is extremely stylized, but it is
sufficient to analyze the impact of differences in the adoption order on the
firms’ incentives to engage in adaptive R&D. We could specify other forms of
potential second-mover and first-mover advantages, e.g. by introducing
uncertainty, information lags, or allowing for a continuation of search activities
by the follower and a temporary monopoly position for the leader. However,
these details are not crucial for my purpose. The main point is that adoption is
viewed as occurring sequentially, and in response to the outcome of adaptive
R&D.
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III. SUBGAME-PERFECT NASH EQUILIBRIUM

A strategy for each firm is a sequence of state-dependent decisions: when new
information arrives, each firm decides whether to adopt or to wait until it
becomes more profitable to adopt, contingent upon the increment to the value
of adoption developed to date and the rivals’ previous adoption decisions. I
shall focus on subgame-perfect Nash equilibria in which the order of moves is
not predetermined (subgame-perfect closed-loop equilibria). In the subgames
in which one firm (the leader) has already adopted, the other firm’s (the
follower’s) decision problem is solved by choosing a best response. Taking the
follower’s best response into account, we can solve for the equilibrium
behavior in the subgames prior to the first adoption. For this, we need to find
one firm’s best response to the rival firm’s strategy, given no previous
adoption.

It is a well-known result from search theory for the case of an individual firm
that a firm’s optimal policy is to invest in adaptive R&D until x exceeds a
reservation value &, such that

Vi(®) - V'(©)=0 (1)

where VA(x) is the firm’s expected payoff from adopting the new technology,
given that the increment to profitability developed already is x, and V¥(x) is the
expected discounted payoff from an additional round of information acquisi-
tion activities (see for example McMillan & Rothschild, 1994). In the following
it will be shown that each firm will employ such a reservation level strategy in
the subgame-perfect equilibrium of the two-firm game. Lemma 1 will
demonstrate that firm i’s best response to a reservation level strategy of firm j,
¢{&), possesses the reservation level property, ie. ¢(§)=§, and is a
continuous function. Lemma 2 will characterize the best response function
further. Proposition 1 will then establish the existence of a subgame-perfect
closed-loop equilibrium in reservation level strategies. Note that there cannot
be any equilibria in which firms do not employ reservation-level strategies.
This follows from Lemma 1 and the assumption that search is initially
attractive for each firm.

Let Vi(x, &) be firm i’s expected return from adopting as a function of the
highest x; at hand and the rival’s reservation level §, given that no firm has
adopted previously. Hence,

w(xia g]) =I1,(2) - K, +x, 2)

Let V{(x, &) denote firm i’s expected return from additional search activities,
given no previous adoption. By waiting, firm i receives new information before
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firm j’s adoption with probability N[\ + A(1 — Fi(§))], but is preempted by firm
j with probability [N(1 — F{(&)VIN+N(1 — F(§))]. We know that in the
simplest case of our model the follower’s best response to the leader’s adoption
is immediate adoption. Hence, we have
A
N+N[1 = F(E)l+r;
M1 = F(§)]

N+NI = FE)] +7,
From Reinganum (1982a) we know that firm i’s problem in the subgames prior
to the first adoption is isomorphic to (1). Firm i’s best response to &, @,(£), is

therefore an optimal stopping rule of the form: stop R&D whenever x;2§,
where §; solves

V?V(xi’ gj) =

(M(2) — K+ [ 0dF () + x,F(x)]

I1,(2) (3)

Vzw(giv g,) - ViA(gi, gj) =0, 4)
otherwise continue. ¢(§) is obtained by substituting (2) and (3) into (4). To
simplify notation, we define the value of the next round of adaptive R&D to be
H(x)= [} (8 — x)dF(8), and II =TI,(2).

Lemma 1. (i) Firm i’s best response to firm j’s optimal stopping rule with a
reservation level £, is to adopt whenever x,; 2§, where &, is the unique value
such that

MNH(E)=r(I1 = K;+ &) + N1 — FEI(A — Il - K+ E]; &)

otherwise continue R&D. (ii) Firm i’s best response function
¢(&):[0, K;]— [0, K;] is continuous in §;

The LHS of equation (5) represents the value of the next piece of information,
while the first term of the RHS is the opportunity cost in terms of foregone
profits. The remaining term gives the impact of the rival firm’s strategy.
Depending on whether the potential first-mover advantage outweighs the
potential second-mover advantage or vice versa, the existence of a rival
increases either the marginal costs or benefits of waiting.

The following lemma relates the slopes of the reaction curves to the
advantages in timing. This lemma may be of some independent interest, for it
derives properties of reaction functions in reservation level strategies that are
not restricted to the specific context analyzed in this chapter.

Lemma 2. (i) For =0 i.e. if there is a dominant potential first-mover
advantage, each firm’s reaction function slopes upwards. (ii) For a =1, i.e. if
there is dominant potential second-mover advantage, each firm’s reaction
function slopes downwards.
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An upwards sloping reaction curve ¢(§) implies that an increase in the
reservation level for the profitability of adoption by firm j induces firm i to
undertake more development activity as well. The reason is that a higher value
of §; reduces the risk for i of being preempted by j in the case of potential first-
mover advantages. By contrast, when potential second-mover advantages
matter, a higher reservation level by j induces i to engage in less adaptive R&D.
This is due to the smaller chance of benefiting from informational spillovers.

Proposition 1. There exists a subgame-perfect Nash equilibrium in reserva-
tion level strategies (E}, £¥) in [0, K;] x [0, K}].

In this game, the equilibrium order of adoption is induced by chance due to the
stochastic nature of the information acquisition process. Firms that are initially
identical, will have an equal chance of being first or second in the adoption
timing. This result resembles the finding of Fudenberg & Tirole (1985) for a
timing game of new technology adoption in which adoption costs decrease
deterministically over time. They show that the only subgame-perfect
equilibrium is in mixed strategies, given that preemption gains are relatively
large. With identical firms, each firm will be the leader with probability 1/2, and
with probability 1/2 the roles of the firms are reversed — as in the present
chapter. In fact, the stochastic nature of the search process replaces the need for
mixed strategies in the present chapter.’

Another difference between the two models seems worth pointing out. In the
model by Fudenberg and Tirole, the first adoption occurs immediately when the
potential first-mover advantage outweighs any potential second-mover advan-
tage. In the model of this chapter, however, there is a delay of the first adoption
~ even in the presence of a dominant potential first-mover advantage. The
reason is that the stochastic nature of R&D generates an option value of waiting
for new information for each firm. The risk of being preempted is therefore
diminished. As a consequence, ex ante and ex post returns are equalized in
Fudenberg and Tirole’s adoption game, while there is an ex post first-mover
advantage in the preemption equilibrium of the present chapter.®

IV. COMPARATIVE STATICS

As in the search model of Lippman & Mamer (1993), there may exist multiple
equilibria. However, it can be shown that uniqueness is obtainable by assuming
that the difference between the potential first-mover and second-mover
advantage is not too high. I shall prove and state the following results for a
unique (stable) equilibrium with F;=F,, K;=K}, and r,=r;.
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Proposition 2. An increase in the potential first-mover advantage, i.e. a
decrease in o, leads to a new equilibrium in which both firms engage in less
R&D. (ii) An increase in the potential second-mover advantage, i.e. an increase
in o, leads to a new equilibrium in which both firms engage in more R&D.

At a stable equilibrium, a higher advantage of moving first in the adoption stage
induces firms to choose lower reservation levels in the R&D stage, while an
increase in the potential second-mover advantages introduces the reverse
incentives. Reinganum (1982b) obtains the opposite results in a patent race
model. In her model, R&D efforts determine the hazard rate of the arrival of
innovative information, and information is assumed to arrive only once.
Conversely, in the model of the present chapter, the rate at which information
arrives, A, is assumed to be fixed, but firms may choose to engage in further
information acquisition in order to increase the payoff from adoption. We may
conclude that the net impact of the different forces stressed in each model upon
the firms’ incentives to engage in R&D is ambiguous.

Proposition 3. (i) A decrease in r; leads to a new equilibrium in which firm i
undertakes more R&D, while firm j undertakes less [more] R&D if potential
first-mover advantages are relatively less [more] important than potential
second-mover advantages. (ii} A decrease in K, leads to a new equilibrium in
which firm i undertakes less R&D, while firm j undertakes more [less] R&D if
potential first-mover advantages are relatively less [more] important than
potential second-mover advantages.

Proposition 3 shows that a firm’s optimal reaction to a change in the rival’s
search and adoption costs is sensitive to the relative importance of first-mover
and second-mover advantages. A decrease in r; shifts up the reaction function
of firm i, increasing both its own equilibrium reservation level and that of the
firm j, provided the reaction functions are upwards-sloping. If the reaction
functions are downwards sloping, firm j’s equilibrium reservation level is
reduced. Conversely, a decrease in the cost of adoption K, shifts firm i’s
reaction function down. Thus we obtain exactly the opposite results.

The next proposition sheds further light on how firms’ incentives to engage
in R&D before adoption depend on the number of firms in the industry.
Generally, one would expect that the following three effects matter. An
additional competitor may lower the value of postponing adoption by
increasing a firm’s risk of being preempted (the preemption effect). On the
other hand, it may enhance the value of waiting by increasing a firm’s
possibility of free-riding (the information-spillover effect) and by lowering a
firm’s opportunity costs of foregone profits due to increased competition in the
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product market (the profit-dissipation effect). The net effect of increased
competition on adoption timing should hence be ambiguous. This ambiguity is
reflected by the inconclusiveness of empirical research (e.g. a positive relation
between market concentration and the speed of adoption is found by Hannan &
McDowell, 1984, a negative relation by Levin et al., 1987, and no statistically
significant one by Karshenas & Stoneman, 1993). In the theoretical literature,
the issue is addressed by Lippman & Mamer (1993) who find that a firm’s
equilibrium reservation level for the value of adoption is decreasing in the
number of potential adopters due to the preemption effect. In their model, only
one firm is allowed to implement the new technology. This winner-take-all
assumption eliminates both, the information-spillover effect and the profit-
dissipation effect. By contrast, in situations with relatively more important
potential late-mover advantages, the preemption effect is outweighed by the
informational-spillover effect. An increase in the number of potential adopters
would then increase a firm’s reservation level for adoption.

The remaining question is hence whether the profit-dissipation effect can
possibly outweigh the preemption effect in situations with relatively more
important potential first-mover advantages. To see that this is possible, consider
the case in which a firm is faced either by one competitor or by none. It is
reasonable to assume that a monopolist does not make less profit than two non-
colluding duopolists, i.e. TI,(1)2(1+a)IL. Let II,(1)=AIl, where A>1+0.
The next proposition shows that under these circumstances the profit-
dissipation effect may be greater than the preemption effect if the potential
first-mover advantage is not too high.

Proposition 4. Suppose there is no informational spillover to adoption. Then
there exists a unique value of a€[0, 1], denoted by 4, such that a monopolist
engages in less R&D than a duopolist if o > Q.

V. POLICY IMPLICATIONS

In the following, particular policy options aimed at tuning the speed of
adoption shall be examined (for an excellent survey of the diffusion policy
literature and actual policy initiatives see Stoneman & Diederen, 1994). It will
be shown that the policies of subsidizing R&D costs and subsidizing adoption
costs are not equivalent, and that their effects depend crucially on the relative
importance of first-mover and second-mover advantages.
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V.1. Corrective Policies

The purpose of this subsection is to examine policies to correct for the negative
externalities (business-stealing) and positive externalities (informational spil-
lovers) in the firms’ adoption behavior. For this, we will compare the
equilibrium reservation level with that chosen optimally by a social planner
whose objective is to maximize the firms’ expected contribution to social
welfare. Consumer surplus is hence neglected in our analysis in order to find
Pigouvian corrective policies (as in Dixit, 1988). The next proposition reveals
that, depending on the relative importance of first-mover and second-mover
advantages, R&D subsidies or adoption subsidies may be used to deal with the
externalities.

Proposition 5. (i) If a =0, ie. in the case of strong potential first-mover
advantages, corrective policy takes the form of an R&D subsidy. (ii) If a =1,
i.e. in the case of strong potential second-mover advantages, corrective policy
takes the form of a subsidy of the adoption costs.

Both policies, R&D and adoption subsidies influence the equilibrium timing of
adoption by altering the marginal value of continuing search for technological
and adaptive information. Subsidizing R&D reduces the marginal costs of
search. This tends to delay technology adoption which is socially beneficial in
the case of strong first-mover advantages. On the other hand, subsidizing
adoption costs reduces the marginal saving from waiting in terms of interest
earned. This tends to speed up adoption, and can therefore be used to correct
positive externalities in the case of strong second-mover advantages.

V.2. Strategic Policies

The comparative static properties of the equilibrium reservation levels
(Proposition 3) suggest that the firm-specific cost of R&D and adoption may be
manipulated for strategic advantage. This issue may be particularly important
in the context of international technological competition. In what follows, I
consider a simple government policy, designed to put the domestic firm in the
leader position when there are relatively more important first-mover advan-
tages, and in the follower position otherwise. The purpose is to compare such
a rent-seeking policy with the corrective policies derived above.

Assume that one firm is located in the home country and the other in the
foreign country. The point of interest concerns the effects of R&D and adoption
subsidies by one country on the distribution of the leader’s and follower’s role.
The other country might, of course, responds to such a policy. For our
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purposes, we will ignore the strategic interaction between governments. The
following proposition states that, in situations with relatively more important
potential first-mover advantages, subsidizing the home firm’s R&D will make
the foreign firm more likely to be the first-mover, while subsidizing the home
firm’s adoption costs will make the home firm more likely to be the first-mover.
The opposite result is obtained in the case of relatively more important
potential second-mover advantages.

Proposition 6. Consider a unique (stable) equilibrium with F;=F, K=K,
and r;=r, A decrease in r; [in K,] makes firm i less [more] likely to reap
potential first-mover advantages, and more [less] likely to reap potential
second-mover advantages.

The intuition behind this result is straightforward. The lower a firm’s search
costs, the higher its expected value of waiting for an additional piece of
information. Hence, an R&D subsidy credibly reduces the home firm’s threat
of preempting its rival. On the other hand, a decrease in the adoption costs
lowers the marginal saving from waiting, and thus credibly reduces the home
firm’s incentive to wait. What is perhaps surprising in these results is that the
strategic policies tend to counteract the corrective policies.” In markets with
strong potential first-mover advantages, an adoption subsidy would establish a
strategic advantage in international competition. But the corrective policy for
that country turns out to be an R&D subsidy. In markets with strong potential
second-mover advantages, the opposite holds.

Apart from the policy implications, the comparative statics result of
Proposition 6 contributes to the large (mainly empirical) literature focusing on
how differences in firm-specific factors such as firm size, R&D expenditures,
or firm ownership may determine the identity of the leader and follower firm
(see Karshenas & Stoneman, 1995 for a survey). The result of Proposition 6
suggests that firms facing lower per-period R&D costs, for example, due to
increasing returns to scale in information acquisition activities, would be
expected to move later in the sequence of adoption, while firms with lower cost
of adoption, for example, because of scale effects in marketing and distribution,
would be expected to move earlier.

VI. CONCLUSIONS

This chapter has extended the strategic search models by Chikte & Deshmukh
(1993) and Lippman & Mamer (1993) to allow for second-mover advantages to
adoption. It has been demonstrated that the subgame-perfect equilibrium is in
reservation level strategies. The slopes of the reaction functions in reservation
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levels have been shown to be determined by the relative importance of potential
first-mover and second-mover advantages to adoption.

The model has been used to examine whether an increase in the number of
potential adopters induces firms to expand or reduce adaptive R&D activities,
and how R&D and adoption subsidies affect welfare and the determination of
the identity of the first-mover. The analysis has revealed that the answers to
these questions depend critically upon the relative magnitude of potential first-
mover and second-mover advantages.

It seems worth further exploring the link between R&D and the timing of
new technology adoption, as well as other options of technology policy.

NOTES

1. Exceptions are Stoneman & David (1986), Stoneman (1987), Jensen (1992),
Riordan (1992), and Magnac & Verdier (1993).

2. An exception is Choi (1994) who considers a game-theoretic model of irreversible
technology choice in which technologies stochastically evolve over time, but his focus
is on network externalities.

3. That R&D activities play an important role in the process of adoption has been
previously stressed by Cohen & Levinthal (1989).

4. One could alternatively model R&D as sequential search resuiting in a resolution
of uncertainty regarding the profitability of the new technology over time (see Jensen,
1982, for the one-firm context, and Bhattacharya et al. (1986) for a discussion of
strategic interaction). Due to the underlying structural similarities between the two
classes of search frameworks (see DeGroot, 1970, Section 13.9, Theorems 1 and 2), the
results derived in this paper should also hold for the uncertainty resolution approach.

5. Examples are the Stackelberg equilibrium of a game of quantity competition or
the Stackelberg equilibrium in a game of spatial competition (see Anderson & Engers,
1997).

6. Explicit search costs are neglected in this paper. Nevertheless, the main principles
derived below should hold when such costs are included in the analysis.

7. See Proposition 6 for an analysis of how asymmetries between the firms define
(stochastically) a particular order of adoption.

8. An ex post first-mover advantage in the preemption game of the Fudenberg &
Tirole (1985) is also obtained by Hendricks (1992) by allowing for uncertainty about
the innovative capabilities of the rival firm.

9. A similar observation is made by Dixit (1988) for a completely different model of
R&D competition. See also Beath et al. (1989) for an examination of strategic R&D
policies in international competition.
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APPENDIX

Proof of Lemma 1. The proof of this lemma is analogous to that of Lemma
1 in Chikte & Deshmukh (1993). Substituting (2) and (3) into (4) and
rearranging terms yields equation (5). It is straightforward to show that the
LHS of (5) is zero for x;=K,, and decreasing in x; with slope — A[1 — Fi{(x)].
The RHS is smaller than the LHS for x,=0 (since corner solutions have been
ruled out), non-negative for x,=K,, and increasing with slope N[1 — F(§)] +7..
Thus, by the continuity of V(x; £) — Vi(x, £) on [0, K1 x [0, K}], there exists
a unique value £ such that V¥(x, ) — Vi(x, £)Z0 as x;=&. Furthermore,
continuity of ¢,(§) on [0, K] is ensured. W
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Proof of Lemma 2. By Lemma 1 and the implicit function theorem, firm i’s
reaction function ¢,(§)) is continuously differentiable with

de§) _ vy - W)/agj

9 (VY- VIGE, ©
For a=0,
o) AFOI - (K~ )]
= 0 7
9% ANl - FEIAL - FE] @
Fora=1,
a‘Pi(gj) _ )\F;(gj)(K; - &) ®)

88 r+ N1 —FE)]+M1 - F(E)]
The proof is analogous for firmj. W

Proof of Proposition 1. Lemma 1 and application of standard fixed point
arguments establish the existence of a Nash equilibrium. W

Proof of Proposition 2. The comparative statics result is first derived for the
reaction functions. At a stable equilibrium, the result can straightforwardly be
extended to the equilibrium reservation levels.

By the implicit function theorem,

3odE) A1 — Fe))IT
da  r+A[1 — F(E)]+M1 — F(&)]

The results for j are analogous. WM

e

Proof of Proposition 3. The comparative statics results are first derived for the
reaction functions. At a stable equilibrium, the results can straightforwardly be
extended to the equilibrium reservation levels.

By the implicit function theorem,

e I-K+x,
(l) ar'. - r,-+)\[1 — F.(E,)] +)\[1 _ I;j{g])]<0 (10)
(@ o¢(E) _ ri+ M1 = F(£)] an

3K,  ri+ N1 — FE)+N[1 — F(&)]
and similarly for irmj. W

Proof of Propesition 4. Consider a unique (stable) equilibrium with F;=F,
K=K, and r;=r;, and assume that there are no informational spillovers. If firm
i is the only potential adopter it chooses a reservation level £, which solves



A Strategic Search Model of Technology Adoption and Policy 213

NH(x) =r(All — K, +x,). (12)
Comparing equations (12) and (5) yields, that £/ <&, if
rlAIl - K+ x] > r(1 — K+ x) + A1 — F(EHII(1 — o)IT]
or
riA—1 N

1—a<x[%7j(§—)ﬁ—]—=-l—oc. (13)
Since A>1,r,>0,and A< 1, it follows that &< 1. W
Proof of Proposition 5. Consider a unique (stable) equilibrium with F;=F,

K=K, and r;=r;
(i) Suppose a=0. Firm i’s optimal reservation level £¥ is the solution of
MNH(x) = r(I1 — K;+x)+ M1 — F(EHIAL — K, +x). (14)

Given two independent R&D processes, the time until new information arrives
is exponential with parameter 2\. The social planner’s optimal reservation level
& is therefore the solution of

2NH(x)=r{Il - K;+x)
or
AH(x)=r(II — K;+x)/2 15)

Since the RHS of (15) is strictly smaller than the RHS of (14) for all x,, £* <&;.
By Lemma 2 and Proposition 3, the result follows immediately.
(ii) Suppose o= 1. Firm i’s optimal reservation level &% is the solution of

MH(x) =r{Il — K;+x) — N1 — F(E))(K; — x)) (16)
The social planner’s optimal reservation level £; is the solution of
ANH(x)=r{Il — K;+x)+rll am
or
NH(x)=r 211 ~ K+ x)/2 18)

Since the RHS of (18) is strictly greater than the RHS of (16) for all x;, £*> &,
By Lemma 2 and Proposition 3, the result follows immediately. W

Proof of Proposition 6. Firm i’s adoption date is an exponentially distributed
random variable with mean E[Ty] = 1/[N(1 — F,(£¥))]. Starting from a unique
(stable) equilibrium with F;=F), K;=K,, and r;=r;. we know from Proposition
3 that a decrease in r; results in an increase of both firms’ equilibrium
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reservation levels in the case of upwards sloping reaction curves. But the
movement to the new equilibrium is along firm j’s reaction curve. Thus £} > £*
in the new equilibrium. Likewise, if the reaction functions are downwards
sloping, we have £¥ > £* in the new equilibrium. Hence, in the new equilibrium,
E[Tg] =1/[N(1 — F(&*))] > V[N(1 — F{(£¥))] = E[T%. The proof for a decrease
in K; is similar. W



