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Abstract

We offer a new algorithm for analyzing innovation timing games. Its main advantage over

the traditional approach is that it applies to problems that had previously been intractable. We

use the algorithm to examine two classical innovation problems. We find that the competition

takes the form of a waiting game with a second-mover advantage either for any level of R&D

costs (process innovation) or for high R&D costs (product innovation). Moreover, both

models predict that the second-mover advantage is monotonically increasing in the costs of

R&D.

r 2004 Elsevier Inc. All rights reserved.
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1. Introduction

This paper studies the optimal timing of bringing a new product or process to the
market. The timing decision is influenced by a basic trade-off: On the one hand,
being first may yield monopoly profits till another firm enters the market. On the
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other hand, being late may lead to higher profits if late firms get access to better
technology.1 The main question is what determines the relative strengths of these two
effects and how do the dynamics of such an interaction look like.
Our study of optimal innovation timing can be based on a fairly small literature in

which technological competition is formulated as a simple timing game—i.e., a game
in which each firm chooses at any point in time whether to make a single, irreversible
move (cf. [5,6, Chapter 4.5; 4,12]).2 Two important results of this literature are the
following. First, in their extension of Reinganum’s [16] duopoly model of technology
adoption, Fudenberg and Tirole [5] show that a first-mover advantage is not
supported by subgame-perfect strategies if firms are unable to precommit to future
actions. In their model, firms decide at any point in time whether to adopt a cost-
reducing new technology, knowing that adoption costs decline over time. By
assumption, the increase in profits due to innovation is greater for the first adopter
than for the second. As the authors show, this potential first-mover advantage
stimulates preemption up to a point where the extra flow profit for the first mover
just equals the extra costs of speeding up adoption. Second, Katz and Shapiro [12]
demonstrate that a potential second-mover advantage may give rise to subgame-
perfect equilibria in which preemption and payoff equalization do not occur. In their
model, payoffs to different firms are asymmetric. Results for a symmetric setting are
provided by Dutta et al. [4] who demonstrate that a potential second-mover
advantage may indeed prevail as the subgame-perfect equilibrium outcome.
However, the approach to simple timing games analysis used in this literature

requires rather restrictive assumptions. In particular, the first-mover’s equilibrium
payoff must be single-peaked in the times that firms may move first. If the possibility
of multiple peaks of this payoff function cannot be excluded, the approach does not
deliver a subgame-perfect equilibrium. We find that this approach is not applicable
to many innovation timing problems with ongoing technological progress. The
reason is that the first-mover’s problem is typically complex since it incorporates the
best response of the second mover, which is the solution to a non-trivial
maximization problem.
The present paper aims to fill that gap by offering a more general approach for

simple timing games which does not rely on ensuring single-peakedness of the first-
mover’s payoff function. The approach generalizes the existing results of Fudenberg
and Tirole [5,6], Katz and Shapiro [12], and Dutta et al. [4]. Our central result is a
theorem asserting general conditions under which simple timing games possess a
unique equilibrium outcome. One property of this outcome is that, as long as the
first-mover’s equilibrium payoff is continuous in the times that firms may move first,
it never involves a first-mover advantage. The competition is then structured either
as a preemption game with payoff equalization in equilibrium or as a waiting game
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technological competition, which focuses on invention of new technology, assuming that first discovery

results in a patent which excludes others from innovating as well. Prominent examples include Loury [14],
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with a second-mover advantage. We also provide an algorithm for determining
whether a specific game is one of preemption or one of waiting. In addition, we offer
two extensions for the analysis of simple timing games when the first-mover’s payoff
function is not necessarily continuous.
We illustrate the usefulness of our more general approach by applying it to two

classical innovation scenarios: one of process innovation and another of product
innovation. For process innovation, we consider a dynamic version of the classical
process innovation story as in Dasgupta and Stiglitz [3] and Reinganum [16,18].
Firms choose a level of variable costs over time, which determines their cost position
during subsequent Cournot quantity competition. For product innovation, we
consider a dynamic version of a vertical product differentiation model adapted from
Dutta et al. [4] and Tirole [24].3 Firms choose at any date whether to bring the
currently available product to the market or whether to wait and market a product
of higher quality. Once both firms have entered, they compete in prices. To the best
of our knowledge, the process innovation game has not been studied before. For the
product innovation game, analytical results have been obtained so far only for polar
cases [4,9]. Our analysis reveals that in both settings the competition may take the
form of a waiting game with a second-mover advantage in equilibrium. Moreover,
we find that in both games the second-mover advantage increases monotonically as
R&D becomes more costly.
In Section 2, we describe the general framework as well as the specific process and

product innovation timing games. In Section 3, we illustrate why the existing
approach fails to provide solutions to these games. Also, in Section 3 the existence
and uniqueness results for simple timing games are formally stated and proved. In
Section 4, we apply our approach to the two innovation timing games to analyze the
effects of R&D cost changes on the equilibrium innovation dynamics.

2. Simple timing games

2.1. Game form

We consider a class of simple timing games, G; characterized by the following
structure: There are two firms, i ¼ a; b: At any point in time tARþ; each firm can
choose whether to make an irreversible stopping decision, conditional on the history
of the game. We will interpret the stopping decision as the firm’s choice to adopt a
currently available new technology. Let ta; tb denote the firms’ respective adoption
dates. A firm’s payoff depends on its own and its rival’s adoption date: paðta; tbÞ and
pbðtb; taÞ: If firm i chooses t1 while firm j ð jaiÞ chooses t24t1; then i is called the
leader and j the follower. Throughout the paper, we will make the following basic
assumptions:
(A1) Time is continuous in the sense of ‘discrete but with a grid that is infinitely

fine’ (cf. Simon and Stinchcombe [22]). That is, any continuous-time strategy profile
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will be restricted to an arbitrary, increasingly fine sequence of discrete-time grids,
and the continuous-time outcome will be defined to be the limit of the discrete-time
outcomes.4

(A2) There exist two piecewise continuous functions

p1; p2 : fðt1ARþÞ � ðt2ARþÞ j 0pt1pt2g-Rþ

with p1ðt1; t2Þ ¼ p2ðt1; t2Þ if t1 ¼ t2; and

piðti; tjÞ ¼
p1ðti; tjÞ if tiotj;

p2ðtj; tiÞ if tiXtj

�

for ðiajÞAfa; bg:
(A3) If a firm is indifferent between the leader’s and follower’s role at any date t;

then it attempts to become the leader. If, additionally, the leader is indifferent
between adopting at two different points in time, then it chooses the earlier one.
Furthermore, if ta ¼ tb; then we assume that only one firm—each with probability
1=2—actually adopts at that time and becomes the leader, while the other firm
becomes the follower and may postpone its adoption.5

Assumption A1 circumvents the problem that backwards induction cannot be
applied in continuous time. That is, we regard discrete-time with a very fine grid as a
convenient mathematical construction to represent the notion of ‘continuous time’.
Assumption A2 imposes symmetry between firms. Assumption A3 is used to
formalize the idea that firms will be able to avoid coordination failure as an
equilibrium outcome. That is, firms will not choose to move at the same instant of
time if they would regret this move afterwards. As observed by Fudenberg and
Tirole [5], an equilibrium involving a positive probability of coordination failure
cannot be obtained in the polar case of a continuous-time game without a grid,
where equilibria are defined to be the limits of discrete-time mixed-strategy
equilibria. By contrast, in the limit of a discrete-time game where the period length
converges to zero, coordination failure is a possible equilibrium outcome. Hence, if
one uses a discrete-time game with very short time lags to represent the notion of
‘continuous time’ (as we do), one needs to make an assumption that explicitly rules
out the possibility of coordination failure. Several alternative assumptions can be
made: (i) a randomization device as it is used here, in [4,12,22]; (ii) alternating-moves
as in [8,20]; (iii) firm-specific lags between observations and decisions as in [7].
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4Simon and Stinchcombe [22] identify conditions under which the discrete-time outcomes converge to a

unique limit that is independent of the particular sequence of grids. Roughly, the conditions require (i) an

upper bound on the number of moves, (ii) that strategies depend piecewise continuously on time, and (iii)

that actions later in the game are not ‘‘too sensitive’’ in a certain sense to the precise times at which earlier

moves have been made. As it will turn out, the simple timing games considered in the present paper satisfy

these conditions.
5 In the limit, adoption by one firm may result in an instantaneous follow-on adoption by the other firm,

i.e., the two firms adopt ‘consecutively but at the same instant of time’, and both firms obtain the same

payoff.
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2.2. Innovation timing games—two examples

In this subsection, we present two specific examples: first, process innovation
timing and, second, product innovation timing. In both games, there are two firms
who have the opportunity to develop a new product. At each point in time, each firm
chooses whether to bring the new product to the market, using the so far developed
technological potential for the rest of the game, or whether to continue to invest in
research and development (R&D) to obtain a better technology. Let kðtÞ be each
firm’s R&D costs per unit of time at time t:6

The monopoly profit per unit of time that is associated with the leader’s entry at
time t1 is RMðt1Þ: The leader’s and follower’s equilibrium duopoly profits per unit of
time as functions of the leader’s and follower’s entry times are R1ðt1; t2Þ; and
R2ðt1; t2Þ; respectively. The respective payoffs are thus given by

p1ðt1; t2Þ ¼
Z t2

t1

e
rtRMðt1Þ dtþ
Z

N

t2

e
rtR1ðt1; t2Þ dt

Z t1

0

e
rtkðtÞ dt; ð1Þ

p2ðt1; t2Þ ¼
Z

N

t2

e
rtR2ðt1; t2Þ dt

Z t2

0

e
rtkðtÞ dt ð2Þ

with t1pt2; and R1ðt1; t2Þ ¼ R2ðt1; t2Þ if t1 ¼ t2:
Process innovation timing: In the process innovation game, firms can choose to

reduce the cost of producing the new product before they enter the market. The total
cost of producing qi units of output is ciqi for firm i ¼ 1; 2; where ci is constant.
These costs decline over time by means of a deterministic and possibly costly
research technology: ciðtÞ ¼ e
ati ; where a40 is the rate of technological progress.
Note that the cost-reducing technology is characterized by diminishing returns per
period. A natural form for the R&D cost function in this context is k ¼ l; with lX0
for all t:7

The demand side for the new product is characterized by a simple linear inverse
(flow) demand function. Money units are normalized such that inverse demand per
unit of time is p ¼ 1
 q where q represents the aggregate quantity.
The equilibrium profit flows per unit of time for the monopolist and the duopolists

from Cournot quantity competition with homogenous goods are, respectively:

R̂M ¼ 1
4
ð1
 c1Þ2;

R̂1 ¼ max 1
9
ð1
 2c1 þ c2Þ2; 0

n o
; R̂2 ¼ min 1

9
ð 1
 2c1 þ c2Þ2; 14 ð1
 c1Þ2

n o
: ð3Þ

Note that there are two cases to distinguish: c2X2c1 
 1; i.e. the innovation by the
follower is nondrastic, and c2o2c1 
 1; i.e. it is drastic. If the innovation becomes
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market entry. As a consequence, at any date of market entry, all R&D expenditures are sunk.

Furthermore, we assume that a firm that stops its R&D activity and is indifferent between entering the

market at that date and staying out forever will choose to enter. Thus, entry deterrence is no issue in our

paper.
7This form for the R&D cost function is, for instance, used by Reinganum [18].
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drastic, the follower will set its monopoly price and the leader will shut down.

Clearly, R̂Mðc1Þ and R̂iðc1; c2Þ can be written as functions of time. Hence the
structure of the payoffs is of the form (1) and (2).

Product innovation timing: In the product innovation game, firms can choose to
improve the quality of the new product before they enter the market. The available
product quality sðtÞ is increasing in time t by means of a deterministic and possibly
costly research technology. We assume, as in [4], that s is proportional to t; and
without further loss of generality that t ¼ s: After a firm has entered the market, the
quality of its product is fixed. Each firm’s R&D costs per unit of time are ls; with
lX0: Variable costs of production are independent of quality and zero.
For the demand side, we use a model adapted from Tirole [24]. Each period, each

consumer buys at most one unit from either firm 1 or firm 2. Consumers differ in a
taste parameter y; and they get in each period a net utility if they buy a quality si at
price pi of U ¼ siy
 pi; and zero otherwise. A consumer of ‘‘taste’’ y will buy if UX0
for at least one of the offered price-quality combinations, and she will buy from the
firm that offers the best price-quality combination for her. Consumers are uniformly
distributed over the range [0,1]. Without loss of generality, we choose physical and
money units such that inverse (flow) demand pðqÞ for s given quality units is: pðqÞ ¼
sð1
 qÞ; where q denotes aggregate quantity.8

The equilibrium profit flows per unit of time for the monopolist and the duopolists
from price competition with vertically differentiated goods are

RM ¼ 1
4

t1;

R1 ¼ t1t2
t2 
 t1

ð4t2 
 t1Þ2
; R2 ¼ 4t22

t2 
 t1

ð4t2 
 t1Þ2
; ð4Þ

respectively.

3. Solutions to simple timing games

The natural solution concept for simple timing games is subgame-perfect
equilibrium. As in [22], we restrict attention to pure strategies and invoke the
additional concept of iterated elimination of weakly dominated strategies. Here, the
refinement is however only used to exclude some uninteresting, rather pathological
cases.
Following Fudenberg and Tirole [5], we take the relevant choice variable to be the

time that firms may choose to move first. Let RðtÞ : Rþ-Rþ be the best response
function of the follower, defined on the set of times t that firms may choose to move
first. If such a best response function RðtÞ exists, we can specify the leader’s and the
follower’s payoffs as functions of t alone: define LðtÞ ¼ p1ðt;RðtÞÞ and FðtÞ ¼
p2ðt;RðtÞÞ; respectively.9 To ensure that RðtÞ is a well-defined function of the
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the R&D costs parameter l tends to infinity.
9We use t instead of t1 to denote the leader’s adoption time whenever there is no ambiguity.
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leader’s choice t; we assume that if the follower is indifferent between moving on
different dates, it will choose the earlier one.
The aim of this section is to isolate a class of simple timing games for which some

equilibrium outcome can be uniquely identified and is easily described. We begin by
briefly discussing the existing approach to simple timing games analysis.

3.1. Approach with single-peaked L curve

The existing literature on simple timing games (cf. [4,5], [6, Chapter 4.5; 12],
requires that the leader payoff LðtÞ satisfies one major assumption: L must have a
unique maximum. The approach is suggested in Fig. 1.
Consider first the situation depicted in Fig. 1a. Suppose that the L curve is single-

peaked at t��1 : The solution can then be obtained by applying the following argument
due to Fudenberg and Tirole [5].10 It is clear that each firm would like to move first
at t��1 : Knowing this, however, each firm also has an incentive to preempt its rival by

adopting slightly before t��1 : Hence, first adoption at t��1 cannot be an equilibrium.

Similar reasoning can be applied to any t1A�t�1; t��1 ½; where t�1 denotes the intersection
point between the L curve and the F curve. This yields first adoption at time t�1 and
equal payoffs for both firms as the unique subgame-perfect equilibrium outcome.
Next, consider the situation depicted in Fig. 1b. Suppose that the L curve is single-
peaked at t�1: Since the F curve lies above the L curve at any t1pt�1; it is clear that no
firm has an incentive to preempt its rival before date t�1: In fact, the unique subgame-
perfect equilibrium (up to relabelling of firms) involves first adoption at t�1 and a

higher payoff for the second mover.11

Note that one consequence of assuming that the L curve is single-peaked is that
the problem of determining a ‘‘terminal subgame of the game’’, where one can begin

ARTICLE IN PRESS
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Fig. 1.

10 In fact, a similar argument has already been made by Karlin [11, Chapter 6], however, without using

the concept of subgame perfection.
11This equilibrium is asymmetric. That is, the competitors’ expectations about the rival’s strategies

determine the equilibrium outcome. If, for example, firm i believes that j never enters first, i may choose to

be the first entrant. Likewise, if j has the reputation of being likely to enter first, it may be optimal for i to

wait until j has entered. In the case where the game is structured as a waiting game, there is also a

continuum of mixed-strategy equilibria which are not considered here.
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applying Fudenberg and Tirole’s preemption argument, is simple: by examining the
first-order condition for maximizing L; it is typically easy to determine the accurate
location of the maximum of L: Then, what is left to check is whether the L curve is
above or below the F curve at that point. If L is above F (as in Fig. 1a), the
equilibrium involves preemption and payoff equalization. If L is below F (as in
Fig. 1b), firms wait until the maximum point of the L curve, and there is a second-
mover advantage in equilibrium.
In order to ensure that this approach is applicable, it is essential that the possibility

of multiple peaks of the L curve can be excluded. If there were, say, two maxima of
L; the equilibrium adoption date of the leader could be at the second maximum, but
also at any earlier point in time. In such a case the approach used in the existing
literature does not deliver a subgame-perfect equilibrium. Note that the failure to
exclude multiple peaks of the L curve does not even allow for a numerical
application of this approach. The reason is that for a numerical computation of the
payoff curves it is essential to have an appropriate terminal condition. Otherwise,
stopping the computation at some point after the equilibrium candidate t�1 would not
exclude the possibility of some t04t�1 to be the leader’s equilibrium adoption date

instead of t�1:
12

We argue that single-peakedness of the L curve cannot be regarded as a natural
property of innovation timing games. In all applications that we have analyzed this
assumption either had to be rejected or it turned out to be impossible to verify. The
reason is that the first-mover’s problem is typically complex since it incorporates the
best response of the follower, which is the solution of a non-trivial maximization
problem.
For the process innovation game, even for the simplest parameter constellations,

that is for a ¼ r ¼ 1; we detect multiple peaks of the L curve for lA½0:0246; 0:0346].13
An example is depicted in Fig. 2 where the thick curve is the L curve for a ¼ r ¼ 1
and l ¼ 0:03: In this case, L has two peaks, one at t ¼ 0 and another at t ¼ 0:717:14

For the product innovation game described above, the best response of the
follower, t2 ¼ Rðt1Þ; solves the following first-order condition:

rlð4t2 
 t1Þ3 
 16t22 þ 12t1t2 
 8t21 þ 16rt32 
 20rt22t1 þ 4rt2t
2
1 ¼ 0 ð5Þ

which reveals that it is very difficult to exclude the possibility of multiple peaks of the
L curve. In fact, we did not manage to analytically verify single-peakedness of L for
this application. We show that the approach presented below can, however, easily be
applied to determine the subgame-perfect equilibrium outcome of this game, since
this approach does not rely on single-peakedness of L:

ARTICLE IN PRESS
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only in the range of joint adoption of leader and follower. They show that in that case there may exist

several subgame-perfect equilibria.
13 It can easily be checked that payoffs of either firm can only be positive for l in the range ½0; 0:0625�:
14The kinks of the L curve are due to a change in the follower’s best response from drastic to non-drastic

innovation. Additional complications arise in the case of aar; since not only the presence of multiple

peaks and kinks of L are common phenomena, but the L curve exhibits also points of discontinuities for

certain parameter constellations.
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3.2. Approach with possibly multiple-peaked L curve

We now present an approach to simple timing games analysis that allows for the
possibility that the L curve is not single-peaked. We shall also provide an algorithm
for determining the dynamic nature of the game, i.e., whether it is a one of
preemption or one of waiting.
Define date T1 by

T1 :¼ minft : Lðt̂1ðtÞÞXFðtÞg; ð6Þ

where

t̂1ðtÞ :¼ max t̂ : t̂ ¼ arg max
½0;t�

LðxÞ
� �

; ð7Þ

That is, T1 denotes the earliest point in time where the F curve just falls below the
maximum value that the L curve achieves over the range ½0; t�: In the next lemma, we
state conditions under which a simple timing game gAG has a unique point T1: The
lemma is proved in the appendix.

Lemma 1. Assume that a simple timing game gAG fulfills the following conditions:

1. There exists a best response function RðtÞ:
2. There exists some point t0Að0;NÞ such that Fð0Þ4Lð0ÞX0 and Fðt0Þp0:

Then there exists a unique T1:

Our central result is a theorem asserting two rather mild conditions under which a
simple timing game gAG has a unique equilibrium outcome that is easily obtainable
by analyzing the game only for the range ½0;T1�; irrespective of the shape of the
payoff curves after T1: We have incorporated these conditions in Fig. 3: (i) the L
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curve is continuous, and (ii) the F curve is continuous and non-increasing. In this
figure, L has multiple peaks, which rules out an application of the existing approach.
The thick curve, which we call the ‘‘envelope L curve’’, gives the maximum value that
L achieves over the range ½0; t�; for any given t: As we shall show below, under these
two conditions of the payoff functions, point T1 is the first intersection point
between the envelope L curve and the F curve. Furthermore, this implies that T1 is a
boundary point of the set of times that firms will move first.15

Before we state our theorem, we will introduce the two conditions on the payoff
functions informally and illustrate what happens if they are violated.

Continuous L curve: Fig. 4 illustrates the possible problem arising from a
discontinuous L curve. In the figure, the L curve jumps upwards at some date later
than T1: One can verify that in this case there are at least two different subgame-
perfect equilibrium outcomes: (i) both firms trying to be first at T1; and (ii) both
firms waiting until the point of discontinuity. Thus, discontinuities of the L curve
may give rise to multiple equilibrium outcomes.
The condition is clearly restrictive, and especially not suitable if additional fixed-

costs of market entry and hence entry deterrence are an issue.16 However, apart from
such cases, continuity of the L curve is typically satisfied in games with ongoing
technological progress where the best response function of the follower, RðtÞ does
not change discontinuously, such as in the two innovation timing games considered
in the present paper. Moreover, as we will show below, our algorithm may still be
applicable when the condition is relaxed.

Continuous and non-increasing F curve: The second class of games that we exclude
are those in which the F curve is discontinuous and/or increasing. Restricting F to be
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15The approach of finding solutions via intersection point arguments is thus somewhat similar as the

methodology used by Vives [25] in his analysis of supermodular games.
16Entry deterrence plays no role in the examples studied in this paper, since R&D expenditures are sunk

at any date where the entry decision has to be made. Thus, entry is at any moment in time effectively

costless. Also, note that no firm can force its rival into an eventually profitless situation, since any firm

could decide to be the leader at any point in time. We leave the issue of entry deterrence for future

research.
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a continuous function, turns out to be a rather mild assumption, since this function
gives the best-response payoff to any leader’s choice t; and is obtained by integrating
with respect to time some instantaneous flow profits, which typically depend only on
time and the fact that the other firm has adopted already. Requiring F to be non-
increasing in the leader’s choice, is more restrictive. In the context of innovation
timing, the assumption has, however, a rather natural interpretation: in the presence
of ongoing technological progress, earlier innovation means usage of a less advanced

technology. Thus, if the leader innovates earlier, it will be in a weaker technological
position during product market competition. An earlier leader’s choice thus implies
higher duopoly profits for the follower. In fact, the assumption of a non-increasing F

curve turns out to be typically satisfied for games of innovation timing where firms
enter a new market, such as in the two examples considered in this paper.
Without the condition, one can still establish the existence of subgame-perfect

equilibria. However, when the L curve has multiple peaks, the equilibrium outcome
is not necessarily unique. The analysis of subgame-perfect equilibria then requires to
examine a considerably larger set of subgames, with a ‘‘terminal node’’ specified in a
way which depends on the particular nature of the specific game under
consideration.

Theorem 1 (Unique equilibrium outcome). Consider a simple timing game gAG that

satisfies the conditions stated in Lemma 1 and in addition:

1. LðtÞ is continuous.

2. FðtÞ is continuous and non-increasing.

Then the game has at least one subgame-perfect equilibrium in undominated

pure strategies and the equilibrium outcome is unique (up to relabelling of firms):

one firm adopts at t�1; the other firm follows at Rðt�1Þ; where t�1 :¼ t̂1ðT1Þ; as

defined above; equilibrium payoffs are Lðt�1Þ ¼ Fðt�1Þ if t�1 ¼ T1; and Lðt�1ÞoFðt�1Þ
if t�1oT1:
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Proof. In this proof, we will use the following joint definition:

T̃1ðtÞ � minft: Lðt̃1ðt; tÞÞXFðtÞg; ð8Þ

t̃1ðt; tÞ :¼ max t̂ : t̂ ¼ arg max
½t;t�

LðxÞ
� �

: ð9Þ

That is, T̃1ðtÞ denotes the point in time where the F -curve just falls below the

maximum level that the L-curve obtains from some t up to T̃1: Correspondingly

t̃1ðt; T̃1Þ is the point in time where the L-curve attains that maximum.

Note that T1 ¼ T̃1ð0Þ and t�1 ¼ t̃1ð0;T1Þ; where T1 is as defined above. By

Lemma 1, t�1 and T1 exist and are unique.

We show that a game gAG that satisfies the conditions of Lemma 1 has a subgame-
perfect equilibrium consisting of the following pair of pure strategies:
Given no previous adoption, both firms choose ‘‘No adoption’’ at any tot�1:

At any tXt�1; given no previous adoption, firm i chooses

* ‘‘Adoption’’ if LðtÞXFðtÞ or ½LðtÞoFðtÞ and t ¼ t̃1ðt; T̃1ðtÞÞ�; or
* ‘‘No adoption’’ if ½LðtÞoFðtÞ and tat̃1ðt; T̃1ðtÞÞ�;

and firm j chooses

* ‘‘Adoption’’ if LðtÞXFðtÞ; or
* ‘‘No adoption’’ if LðtÞoFðtÞ:

If either firm has already adopted at some time t; the other firm adopts at RðtÞ:
First, note that the conditions stated in Lemma 1 ensure that each firm finds it

optimal to wait at any tot�1; but that adoption will eventually occur at some tXt�1
with toN: Next, consider the subgames starting at any tXt�1: There are three cases
to check for profitable deviations:
(i) If LðtÞXFðtÞ; the given strategies yield a payoff of 1=2½LðtÞ þ FðtÞ� for each

firm, while any deviation yields at most FðtÞ; with FðtÞp1=2½LðtÞ þ FðtÞ�:
(ii) If LðtÞoFðtÞ and Lðt̃1ðt; T̃1ðtÞÞÞoFðt̃1ðt; T̃1ðtÞÞÞ; the given strategies yield a

payoff of Lðt̃1ðt; T̃1ðtÞÞÞ for firm i and a payoff of Fðt̃1ðt; T̃1ðtÞÞÞ for firm j: We now

show that any deviation of firm i yields at most Lðt̃1ðt; T̃1ðtÞÞÞ; given j’s strategy. The

only possibly profitable deviation must involve ‘‘Adoption’’ at some t04T̃1ðtÞ with
Lðt0Þ4Lðt̃1ðt; T̃1ðtÞÞÞ: It follows from Conditions 1 and 2 that in that case there must

be an intersection between L and F at some t00 for T̃1ðtÞot00ot0: However, the
strategy of firm j prescribes ‘‘Adoption’’ at t00: This yields Fðt00Þ ¼ Lðt00Þ for firm i;

which is smaller than Lðt̃1ðt; T̃1ðtÞÞÞ by Condition 2; a contradiction. Note further

that any deviation of firm j yields at most 1=2½Lðt̃1ðt; T̃1ðtÞÞÞ þ Fðt̃1ðt; T̃1ðtÞÞÞ�; given
i’s strategy, with 1=2½Lðt̃1ðt; T̃1ðtÞÞÞ þ Fðt̃1ðt; T̃1ðtÞÞÞ�oFðt̃1ðt; T̃1ðtÞÞÞ:
(iii) If LðtÞoFðtÞ and Lðt̃1ðt; T̃1ðtÞÞÞ ¼ Fðt̃1ðt; T̃1ðtÞÞÞ; the given strategies yield a

payoff of Lðt̃1ðt; T̃1ðtÞÞÞ ¼ Fðt̃1ðt; T̃1ðtÞÞ for each firm. Any ‘‘Adoption’’ before
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t̃1ðt; T̃1ðtÞÞ is weakly dominated by ‘‘No adoption’’ until t̃1ðt; T̃1ðtÞÞ: On the other

hand, no firm can gain from waiting longer than t̃1ðt; T̃1ðtÞÞ:
Thus, the described strategies are best responses to each other and constitute a

subgame-perfect equilibrium in every simple timing game gAG that satisfies
Conditions 1 to 2. If the strategies are played on an arbitrary discrete-time grid,
the resulting equilibrium outcome is that the first adoption occurs weakly beyond t�1:
In the limit, firms adopt exactly at ðt�1;Rðt�1ÞÞ; with Lðt�1Þ ¼ Fðt�1Þ if t�1 ¼ T1 and

Lðt�1ÞoFðt�1Þ if t�1oT1:
To prove the second claim, we show that there exists no subgame-perfect

equilibrium in pure strategies which does not implement first adoption at t�1 and

equilibrium payoffs of Lðt�1Þ ¼ Fðt�1Þ if t�1 ¼ T1; and Lðt�1ÞoFðt�1Þ if t�1oT1: Note first
that the strategies given above are a subgame-perfect equilibrium for i ¼ a and j ¼ b;
and vice versa, and, moreover, for relabeling of the firms in subgames starting at any
%t where Lð%tÞ ¼ Fð%tÞ: Clearly, such relabeling in subgames starting at any t4t�1 does
not change the equilibrium outcome since t�1 remains the leader’s choice in the

described equilibrium.
Consider now potential equilibria with first adoption at t1 where t14t�1: By

Condition 2, we must have for any t14t�1 that either Fðt1ÞpLðt1Þ or Lðt1ÞoLðt�1Þ:
Clearly, if Lðt1ÞoLðt�1Þ; t14t�1 cannot be the leader’s choice in an equilibrium in pure

strategies. Now consider the case where Fðt1ÞoLðt1Þ and Lðt1ÞXLðt�1Þ: In that case

t1 cannot be the leader’s choice in equilibrium either, since, if one firm attempts to
become the leader at that date, it is always profitable for the other firm to become the
leader slightly earlier. Note that the case where Fðt1Þ ¼ Lðt1Þ and Lðt1ÞXLðt�1Þ for
any t14t�1 is ruled out by assumption (A3).

Finally, consider possible equilibria with first adoption at t1 where t1ot�1: Note
that by definition of t�1; the inequalities LðtÞpLðt�1Þ and Fðt1Þ4Lðt1Þ must hold for

all t1ot�1: Hence, ‘‘Adoption’’ by one firm before t�1 is a weakly dominated strategy.

This completes the proof of the theorem. &

The equilibrium strategies identified in the proof of Theorem 1 have the
following properties. The first adoption occurs at point t�1pT1; and the second

adoption at point Rðt�1ÞXt�1: If t�1 ¼ T1; firms engage in a preemption game to be the

first, and they obtain equal payoffs, i.e., Lðt�1Þ ¼ Fðt�1Þ: If t�1oT1; firms engage in a

waiting game to be the best, and there is a second-mover advantage,
i.e., Lðt�1ÞoFðt�1Þ:
Note that our results reduce to those of the existing literature if the

theorem is applied to problems where the L curve is ensured to be single-peaked.
For example, in the situations depicted in Fig. 1, we have T1 ¼ t�1; so we know

from Theorem 1 that the unique equilibrium outcome involves preemption and
first innovation at t�1; with payoff equalization across firms. In Fig. 1b, we

have T14t�1; so the unique equilibrium outcome involves waiting until one

firm innovates at t�1; and there is a higher payoff for the second mover. Theorem 1

thus generalizes the existing results by omitting the usual assumption on the
first-mover’s equilibrium payoff. Furthermore, the theorem isolates a class of

ARTICLE IN PRESS
H.C. Hoppe, U. Lehmann-Grube / Journal of Economic Theory 121 (2005) 30–5042



simple timing games for which the equilibrium outcome is unique and easily
describable, thus providing a basis for numerical approaches to compute explicit
solutions to particular games.

3.3. Approach with possibly discontinuous L curve

This subsection shows that the application of our algorithm is not restricted to
games with a continuous L curve. The following two corollaries to Theorem 1 are
proved in the appendix.

Corollary 1. Consider a simple timing game gAG that satisfies the conditions stated in

Lemma 1 and in addition:

1. Let Q ¼ ft : LðtÞXFðtÞg: Then LðsupXÞpsupLðXÞ and LðinfX ÞXinfLðX Þ for

every nonempty subset X of Q:
2. FðtÞ is continuous and non-increasing.

Then the unique equilibrium outcome is as described in Theorem 1.

Corollary 1 reveals that the algorithm suggested in Theorem 1 continues to be
applicable to simple timing games in which the L curve is discontinuous, but involves
no upwards jumps above the F curve. Note that in this case the envelope L curve is
still continuous for tXT1: This implies that point T1; as defined above, is still a
boundary point of the set of times that firms will move first.
In the next corollary, we deal with cases where the envelope L curve is not

necessarily continuous for tXT1:

Corollary 2. Consider a simple timing game gAG that satisfies the conditions stated in

Lemma 1 and Condition 2 of Theorem 1. In addition assume A3ðiiÞ that firms move

alternately, first a then b; then a again and so on (as for example in [8,20]). Then the

equilibrium outcome is either:

1. as described in Theorem 1: one firm adopts at t�1; the other firm follows at Rðt�1Þ;
where t�1 :¼ t̂1ðT1Þ; as above; equilibrium payoffs are Lðt�1Þ ¼ Fðt�1Þ if t�1 ¼ T1; and

Lðt�1ÞoFðt�1Þ if t�1oT1; or

2. one firm adopts at t�1; the other firm follows at Rðt�1Þ; where t�1 ¼ T1; equilibrium

payoffs are Lðt�1Þ4Fðt�1Þ:

Corollary 2 shows that possible equilibrium candidates involving first adoption
beyond point T1 are not robust to a change in the alternate A3 assumptions used for
ruling out coordination failure as a possible equilibrium outcome. Thus, in games
where the envelope L curve is not a continuous function, the equilibria involving first
adoption at or before T1 are the only equilibria that have an alternate-move/
discrete-time analog. These equilibria are captured by the algorithm suggested in
Theorem 1.
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4. Applications

In this section, we illustrate the usefulness of our more general approach by
applying it to the two innovation timing games described above. In particular, we
wish to identify the dynamic nature of these games and study the effects of changing
the R&D costs on the firms’ timing incentives and equilibrium payoffs. The
numerical treatment is described in Appendix B.

4.1. Process innovation timing

For the process innovation game described in Section 2.2, it is easy to verify that
the follower payoff p2 is not single-peaked with respect to t2: This implies the
possibility of discontinuous changes of the follower best response and hence possible
discontinuities of the L curve. However, as we show in the following proposition,
when the rate of technological progress a is equal to the rate of time preference r; no
such discontinuities occur. Hence, Theorem 1 is applicable.17

Proposition 1. The described process innovation game satisfies the conditions of

Theorem 1 if a ¼ r:

Proof. First we check whether the conditions stated in Lemma 1 are satisfied. Note
that the first condition in Lemma 1 is satisfied by assumption. Furthermore, one
can easily check that Lð0ÞoFð0Þ holds. Thus, to verify that the second condition in

Lemma 1 is satisfied, it is sufficient to show that limt1-NFp0: For this let pM ¼R
N

t
RMe
rt dt


R t

0
e
rtkðtÞ dt be the payoff of a monopolist innovating at time t:

Clearly, for t̂ large enough, we have FðtÞopMðtÞ for all t4t̂: Hence, it

suffices to show that limt-NpMp0: This in turn follows from limt-N

R
N

t
ð1
4
ð1


e
tÞ2Þe
rt dt ¼ 0:
By Lemma A.1, which is stated and proved in the appendix, we know that R is

continuous. Since p1 is continuous in both arguments, Condition 1 of Theorem 1 is
satisfied.
We now check whether Condition 2 of Theorem 1 is satisfied. It is clear that F is

continuous, with F 0 ¼ @p2=@t1; since R is best response, and @p2=@t1 ¼ 1=r � e
rt2 �
@R2=@t1: Since @R2=@t1 is either negative or zero here, we obtain that F is non-
increasing. &

Thus, by Theorem 1, we know that the game has a unique equilibrium outcome
for a ¼ r: Furthermore, it is sufficient to evaluate the L and F functions for the range
of ½0;T1� in order to be able to characterize this outcome. The results of our analysis
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analysis is however rather complex and beyond the scope of this paper. Preliminary results for this case

imply that our findings for a ¼ r; as presented here, are fairly robust.
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are presented in Table 1, where L� :¼ Lðt�1Þ and F� :¼ Fðt�1Þ:
18 For all values of the

R&D cost parameter l; we obtain that t�1oT1: That is, the competition is always

structured as a waiting game with a second-mover advantage in equilibrium. This
indicates that both firms value the strategic advantage of being the low-cost firm
during product market competition more than the temporary monopoly position
obtainable for the first innovator. Preemption and payoff equalization do not occur
in this game.
Furthermore, we find that the second-mover advantage, as measured by the ratio

of the follower equilibrium payoff to the leader equilibrium payoff, is monotonically
increasing in the cost of R&D, l: This monotonicity in the cost of R&D may come as
a surprise. After all, the follower firm must pay R&D expenditures for a longer
period of time than the leader. However, apart from this direct effect, an increase in
the R&D costs per unit of time has the following two indirect effects. First, the
follower’s innovation occurs earlier, reducing the duration of the leader’s monopoly
period. Second, the leader’s innovation occurs earlier as well. This means that the
leader adopts a less advanced technology, which has a positive impact on the
duopoly profits of the follower ð@R2=@t1o0Þ: Thus, we may conclude that these
indirect effects outweigh the direct effect.
Finally, it is interesting to note that for very high l the leader effectively stays

away from the market, while the follower becomes a monopolist.19

The approach offered in this paper may also be used to evaluate the
impact of specific R&D policies. Measuring welfare as the present value of the
sum of firms’ equilibrium payoffs, L� and F �; the intertemporal stream of
consumer surplus in monopoly and duopoly, respectively, and tax revenue,
we find for the process innovation game described in Section 2.2 that the
appropriate policy depends critically on the magnitude of the second-mover
advantage in equilibrium: Taxation of R&D is found to be welfare-enhancing if
the second-mover advantage is small, and subsidization if it is large. Moreover, if
R&D costs are so high that no firm would innovate at all, we find that a subsidy,
inducing one of them to innovate, and consequently monopolize the industry, can
improve social welfare.
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18Without loss of generality, we have chosen the units of time such that r ¼ 1:
19For the limiting cases, l ¼ 0 and l-0:0625 (and a ¼ r), it is possible to confirm the numerical results

analytically. Consider first the case where l becomes large. It is straightforward to check that for

l40:0625 not even a monopolist could earn positive profits by innovating at the optimal point in time.

Clearly, as l becomes large (but still smaller than 0.0625) the only possible equilibrium outcome is that one

firm adopts at the optimal point in time, while the other firm stays out of the market (or ‘‘adopts’’ at

t ¼ 0). Applying Theorem 1, we know that in fact this is an equilibrium outcome. That is, one firm

‘‘adopts’’ at t ¼ 0 (i.e., the leader), and hence stays out of the market effectively, while the other firm (i.e.,

the follower) adopts later at the optimal point in time and earns monopoly profits forever after (i.e., a

waiting game structure with a second mover advantage). Now consider the case of l ¼ 0: It is possible to

show that both, the L curve and the F curve, written as functions of the leader’s choice of variable costs,

c1; are a composition of three polynomials of the third degree. It is somewhat tedious but straightforward

to verify analytically that we have a waiting game structure with a second mover advantage in that case as

well, as is stated in Table 1.
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4.2. Product innovation timing

The following proposition shows that Theorem 1 is applicable to the model of
product innovation timing described in Section 2.2.

Proposition 2. The described game of product innovation satisfies the conditions of

Theorem 1.

Proof. By the same arguments as in the proof of the previous proposition it is
ensured that the conditions in Lemma 1 are satisfied.
Now we check Condition 1 of Theorem 1. Note that continuity of the follower

best response function R is a sufficient condition for Condition 1 of Theorem 1. To
show that R is continuous, we will show that p2 is single-peaked in t2 for any t1
which in turn is satisfied if it is ensured that p2 cannot have a local minimum in t2 for
t24t1: Note that p2 is twice differentiable. In fact we have

@2p2
@t22

¼ 
r � @p2
@t2

þ e
t2r � 1

r
� @

2R2

@t22

 @R2

@t2

 k0

� �

with @2R2=@t22o0 and @R2=@t240: Hence @2p2=@t22 is strictly negative at point where

@p2=@t2 ¼ 0: This ensures that p2 cannot have a local minimum and consequently is
single-peaked in t2:
Next, we check Condition 2 of Theorem 1. Clearly F is continuous. To show that F is

non-increasing, note that F 0 ¼ @p2=@t1; since R is best response. We have @p2=@t1 ¼
1=r � e
rt2 � @R2=@t1 which is negative since @R2=@t1 is negative everywhere. &

By Proposition 2, the game has a unique equilibrium outcome. The numerical
results are presented in Table 2.20 If R&D costs, l; are low, we find that t�1 ¼ T1; i.e.,

ARTICLE IN PRESS

Table 1

Results for process innovation

l t1
n c1

n t2
n c2

n T1 Ln Fn Ln=Fn

0.000 1.017 0.362 1.483 0.227 1.058 0.020 0.021 96.81%

0.001 1.012 0.363 1.478 0.228 1.056 0.020 0.020 96.54%

0.002 1.004 0.366 1.469 0.230 1.053 0.019 0.020 95.98%

0.003 0.994 0.370 1.458 0.233 1.048 0.018 0.019 95.33%

0.004 0.985 0.373 1.448 0.235 1.044 0.018 0.019 94.64%

0.005 0.976 0.377 1.439 0.237 1.040 0.017 0.018 93.93%

0.010 0.932 0.394 1.392 0.249 1.019 0.013 0.015 89.34%

0.020 0.831 0.436 1.297 0.273 0.967 0.006 0.009 68.96%

0.030 0.717 0.488 1.210 0.298 0.911 0.001 0.005 10.93%

0.031 0.000 1.000 0.908 0.403 0.889 0.000 0.017 0.00%

0.062 0.000 1.000 0.697 0.498 0.316 0.000 0.000 0.00%

0.064 0.000 1.000 0.000 1.000 0.000 0.000 0.000 —

20Clearly, the results are unaffected by a normalization of the units of time. Hence, as in the process

innovation game, we have normalized, without loss of generality, units of time such that r ¼ 1:
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the competition takes the form of a preemption game, with equal payoffs for both
firms in equilibrium. However, if l gets high, we obtain t�1oT1; and there is a second-
mover advantage in equilibrium. That is, the dynamic nature switches from a
preemption game to a waiting game as R&D becomes more costly. Moreover, the
second-mover advantage is monotonically increasing in the costs of R&D,21 just like
in the process innovation game. This suggests that the direct effect of higher R&D
costs is outweighed by the indirect effects on the duration of the leader’s monopoly
period and the follower’s duopoly profits, similarly as described above for the
process innovation game. Finally, our welfare analysis of the product innovation
game suggests that an R&D subsidy always leads to higher welfare.

Appendix A

Proof of Lemma 1. The first condition ensures that functions LðtÞ and FðtÞ exist. The
boundary condition ensures that the set of points ft : Lðt̂1ðtÞÞXFðtÞg is non-empty.
This implies that T1; as defined by (6), exists. Note that T1 is unique by
definition. &

Lemma A.1. If a ¼ r and l is small enough such that a monopolist can earn positive

profits, then the follower’s best response R is continuous.

Proof of Lemma A.1. We give only a sketch of the proof which is straightforward
but long and tedious. The details are available from the authors on request.
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Table 2

Results for product innovation

l t1
n t2

n T1 Ln Fn Ln=Fn

0.00 0.710 1.573 0.710 0.057 0.057 100.0%

0.01 0.688 1.501 0.688 0.053 0.053 100.0%

0.02 0.670 1.443 0.671 0.050 0.050 100.0%

0.03 0.651 1.380 0.651 0.047 0.047 100.0%

0.04 0.633 1.325 0.633 0.044 0.044 100.0%

0.05 0.619 1.281 0.619 0.041 0.041 100.0%

0.07 0.571 1.176 0.589 0.036 0.037 96.6%

0.10 0.479 1.024 0.547 0.030 0.036 84.6%

0.20 0.297 0.714 0.427 0.018 0.032 57.2%

0.50 0.125 0.377 0.242 0.007 0.024 28.7%

10.21 0.005 0.024 0.016 0.000 0.002 7.3%

N 0.000 0.000 0.000 0.000 0.000 6.3%

21 In [9], we have shown analytically for the limiting cases of l ¼ 0 and l-N that the game is of a

preemption type in the former case and of a waiting game type in the latter case. It follows from continuity

arguments that there exists a threshold level of l such that the game moves from the preemption game

scenario to the waiting game scenario, as indicated by the numerical results in Table 2.
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Note that we can write the follower’s payoff function as a function of c2

p2ðc2Þ ¼ minðpnd; pdÞ ð10Þ

defined over the domain ½0; c1� where

pndðc2Þ ¼ 1=9 � ð1
 2c2 þ c1Þ2c2 
 ð1
 c2Þl ð11Þ

is the follower’s payoff in case of a non-drastic innovation, i.e. if c2X2c1 
 1;

pdðc2Þ ¼ 1=4 � ð1
 c2Þ2c2 
 ð1
 c2Þl ð12Þ

is the follower’s payoff in case of a drastic innovation, i.e. if c2p2c1 
 1: Note that
c2 ¼ e
rt2 ; since a ¼ r: Furthermore, we have normalized (without further loss of
generality) r to 1: We use the following observations:

1. The minimum and the maximum of pnd are at cmin
nd ¼ 1
3
þ 1

3
c1 þ

1
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2c1 þ c21 
 27l

q
and cmax
nd ¼ 1

3
þ 1

3
c1 
 1

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2c1 þ c21 
 27l

q
; respectively;

2. the minimum and the maximum of pd are at cmin
d ¼ 2
3
þ 1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
 12l

p
and cmax
d ¼

2
3

 1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
 12l

p
; respectively;

3. the only possible intersection of pnd and pd is at cint ¼ 2c1 
 1; where for c2pcint it

is ensured that pdppnd while for cintpc2 it is ensured that pndppd;
4. the payoff function of a monopolist is equal to pdðc2Þ; and a monopolist can earn

positive payoffs if and only if pdðcmax
dÞ is positive which in turn is true if and
only if lolmax :¼ 1=16:

The proof proceeds in two main steps: First we show that p2 is single-peaked over

the interval ½0; c1� as long as c1pccrit1 :¼ 3
5
þ 1

20

ffiffiffiffiffi
19

p
C0:82; and lplmax: We do so by

showing (i) that cmin
nd4c1 and further (ii) that cmin
d4cint: The second main step is
to show that the global maximum of p2 over the interval ½0; c1� is at cmax
d for all

c1Xccrit1 : This is shown in four sub-steps:

1. We show that 0ocmax
ndocinto1:
2. We show that 0ocmax
docinto1:

3. We show that pdðcmax
dÞ4pdðcintÞ:
4. We show that pdðcmax
dÞ4pndðc1Þ:

Proof of Corollary 1. It is not difficult to verify that the arguments of the proof of
Theorem 1 continue to be applicable to a simple timing game gAG that satisfies the
conditions stated in Lemma 1 and Condition 2 of Theorem 1, provided the envelope
L curve is continuous for tXT1: Clearly, condition 1 of the corollary is sufficient for
the envelope L curve to be continuous for tXT1: &

Proof of Corollary 2. It is obvious that the equilibrium identified in Theorem 1
continues to be an equilibrium under the alternate-move assumption A3(ii) instead
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of A3(i) in Section 2.1, except that the leader and follower role are uniquely
determined in equilibrium in the case of t�1 ¼ T1:
Apart from A3(ii), the only difference between the corollary and Theorem 1 is that

here we allow for the case that the envelope L curve is discontinuous. Note that the
preemption argument as formulated in the proof of Theorem 1 continues to hold
under the hypotheses of the corollary as well, except at some possible points of
discontinuity of the envelope L curve. Hence, the only possible equilibrium
candidates apart from those formulated in Theorem 1 involve both firms waiting
until some point of discontinuity, say ẗ: Note that ẗXT1 by the definition of T1:
We now show that waiting until ẗ cannot be an equilibrium if ẗ4T1: Suppose both

firms wait until that date. Then the firm which is first to move at or after ẗ; will do so,
while the other firm is sure to become the follower with strictly lower profits than are
obtainable by moving earlier.
Next we consider the case where ẗ ¼ T1: Clearly, by the definition of T1; the only

possible equilibrium involves waiting until ẗ: By assumption A3(ii), the firm which is
first to move at or after ẗ; will do so, while the other firm is sure to become the
follower with strictly lower profits than the first firm. &

Appendix B

Description of numerical treatment

For our approach to simple timing games analysis, it is necessary to evaluate the L

curve and the F curve with high accuracy over the whole relevant domain ½0;T1�: In
the applications considered in this paper, we used a step size for t1 of T1 � 10
6:
Since we had to evaluate the best response of the follower for each value of

t1A½0;T1�; we needed to evaluate, for each parameter constellation, 106 times the
arg max of the follower’s profit Rðt1Þ :¼ arg maxt2

p2ðt1; t2Þ:
In both applications, it was possible to compute the formula for the best response

directly. In the case of product innovation, the problem of finding the follower’s best
response is equivalent to the problem of solving a polynomial of third degree with
respect to t2: Alternatively, since p2ðt1; t2Þ can shown to be single-peaked in t2; we
could have used a standard bi-section algorithm, as described in Judd [10], to find the
only possible root of @p2=@t2: The bi-section algorithm would need between 25 and

35 loops to reach an accuracy goal of e ¼ ðt̂2 
 Rðt1ÞÞ � 10
7 with Rðt1ÞA½t̂2 
 e;
t̂2 þ e�; where t̂2 is the reported solution and Rðt1Þ the true best response. Note that
this bi-section algorithm is applicable whenever it is ensured that p2 is single-peaked
in t2; even if it is not possible to find the possible roots of @p2=@t2 analytically. The
calculation time by using the bi-section algorithm instead of calculating the solution
of the third-degree polynomial directly is about twice as high.
In the case of process innovation, finding the best response is equivalent to solving

a quadratic equation with respect to c2: This is true for any a; l; i.e., not only for
a ¼ r as reported in Section 4.
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We used a 32-Bit Pascal implementation (FreePascal) of this numerical procedure,
using extended format for the floating-point numbers. The calculation time for one
parameter constellation was always less than 1 minute on a standard (500 MHz) PC.
The program code as well as the numerical results for aar (and hence possible
discontinuities) are available from the authors on request.
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